Flexible, Light-Weight, Ultrastrong, and Semiconductive Carbon Nanotube Fibers for a Highly Efficient Solar Cell**

Tao Chen, Shutao Wang, Zhibin Yang, Quanyou Feng, Xuemei Sun, Li Li, Zhong-Sheng Wang,* and Huisheng Peng*

Carbon nanotubes have been widely introduced to fabricate high-efficiency organic solar cells because of their extremely high surface area (e.g., ca. 1600 m² g⁻¹ for single-walled nanotubes) and superior electrical properties. In one direction, nanotubes are used in electrode materials. For example, the incorporation of nanotubes onto titania nanoparticle films has been shown to increase the roughness factor and decrease the charge recombination of electron/hole pairs, and the replacement of platinum with nanotubes as counter electrode catalyzed the reduction of triiodide to improve the cell performance. In another direction, the distribution of nanotubes within the photoactive layer improved the short circuit current density and fill factor owing to rapid charge separation at the nanotube/electron donor interface and efficient electron transport through nanotubes. However, the degrees of improvement are far from what is expected for nanotubes, mainly because of random aggregation of nanotubes in the cells. For a random nanotube network, the electrons have to cross many more boundaries. Therefore, alignment of nanotubes will further greatly improve cell performance as charge transport is more efficient.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201003870.
indicates a multiwalled structure for the building nanotubes with diameter of approximately 8.5 nm in the fiber.

The high degree of alignment of the component nanotubes gives the fiber excellent mechanical and electrical properties. As shown in Figure 2a, the nanotube fiber demonstrates much higher values in both specific strength and specific stiffness than current engineering fibers. For example, the specific strength of a nanotube fiber is 2.9 times that of T1000, the strongest commercial fiber, and the specific stiffness is 3.9 times that of M70J, the stiffest commercial fiber. The electrical conductivity of the nanotube fiber ranges from 10^2 to 10^3 Sm$^{-1}$ at room temperature. Figure 2b shows the temperature dependence of the conductivity of a fiber between 5 and 310 K measured by a four-probe method. The conductivities increase with increasing temperatures, suggesting semiconducting behavior.$^{[23,24]}$ The semiconducting properties of nanotube fibers may be very important to their optoelectronic applications. For example, these nanotube fibers can be used to replace titanium dioxide nanoparticles to fabricate high-performance dye-sensitized solar cells. The electron transport could be much faster along nanotubes than nanoparticles with abundant grain boundaries, and the charge separation of electrons and holes would be more efficient.$^{[23]}$

In addition, the work functions of nanotubes could be further tuned to match the used dyes in devices by surface modifications such as oxidative treatments through the use of air, oxygen plasma, or acid.$^{[25]}$ This treatment will further improve the electron transport between dye molecules and nanotubes. Further analysis (see Figure S2 in the Supporting Information) indicates that conduction in the fiber is mainly controlled by a three-dimensional hopping mechanism, and the calculation details are reported elsewhere.$^{[23]}$ Electrons could not be confined along the fiber and may hop from one site to another in a nanotube, or possibly from one nanotube to another. The three-dimensional conduction in the nanotube fiber is critical to the high performance of the derived solar cell, which will be detailed later.

The nanotube fiber shows a high surface area typically on the order of 10^2 m2 g$^{-1}$. Therefore, a wide variety of materials, including inorganic moieties such as gold nanoparticles,$^{[2]}$ small organic molecules,$^{[24]}$ polymers,$^{[24]}$ and hybrid inorganic/organic molecules such as γ-isocyanatopropltriethoxysilane, could be easily physically incorporated or chemically bonded onto nanotubes in a fiber.$^{[23]}$ The confocal laser scanning microscopy image in Figure 3a shows a nanotube fiber after incorporation of 10,12-pentacosadiynoic acid followed by photopolymerization. The red color corresponds
to the derived fluorescent polydiacetylene, which is well distributed in the nanotube fiber. Figure 3b,c compares SEM images inside a nanotube fiber before and after incorporation of the dye molecule bis(tetraetyl ammonium) cis-diisothiocyanato-bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium(II) (also called N719; chemical structure shown in Figure S3 in the Supporting Information). N719 molecules were also well distributed among nanotubes in the fiber.

N719 was mainly loaded on the outer surfaces of building nanotubes through π-π interactions and van der Waals forces. The interactions between N719 molecules and nanotubes were confirmed by Raman spectra (Figure S4).[27,28] The characteristic peak of the NCS group shifted from 2104 cm\(^{-1}\) for pure N719 to 2098 cm\(^{-1}\) for N719/nanotube composite fibers, and the bipyridine vibration at 1540 cm\(^{-1}\) for pure N719 shifted to 1534 cm\(^{-1}\) for N719/nanotube composites[27] both D-band and G-band peaks at 1344 and 1576 cm\(^{-1}\) for pure nanotubes shifted to 1347 and 1580 cm\(^{-1}\) for N719/nanotube composite fibers, respectively, and the intensity ratios between G-band and D-band peaks decreased from 1.69 for pure nanotube fibers to 1.55 for N719/nanotube composite fibers. Note that for a pure nanotube fiber, the G band is much stronger than that of the D band, which indicated that the building nanotubes were very clean with less amorphous carbon or other impurities (also confirmed by Figure 1b).

We used nanotube/N719 composite fibers to fabricate the organic solar cells on fluorine-doped tin oxide (FTO), and the experimental details are described in the Supporting Information. N719 molecules were also well distributed among nanotubes in the fiber.

To further confirm the obtained \(J_{sc}\) value, the incident photon-to-electron conversion efficiency (IPCE) as a function of wavelength was measured and compared with the UV/Vis absorption spectrum of the N719 in solution (Figure 4b). The two spectra are very similar, which indicates that N719 is the source of photocurrent generation. The photocurrent obtained by integrating the action spectrum with the standard AM1.5G solar emission spectrum is calculated to be 10.1 mA cm\(^{-2}\), which is consistent with that under the simulated solar illumination (100 mW cm\(^{-2}\)). In addition, the IPCE value at 530 nm (an absorption peak for N719) is higher than 90% and approaches 100% if the absorption and reflection of the electrode are taken into account.[29] Thus, high light-harvesting efficiency, electron injection, and charge collection are achieved simultaneously.

Observation of anodic photocurrent generated from the nanotube/N719 composite (Figure S5) indicates that photocurrent is generated by electron injection from excited N719 molecules into the conduction band of nanotubes followed by transportation along the nanotubes, collection by the charge collector, and flow through external circuit to the counter electrode. The resulting dye cations are reduced to neutral state by \(I^-\) ions with production of \(I_3^-\) ions. \(I^-\) reverts to \(I^0\) by accepting electrons at the counter electrode. No net chemical reaction occurs after the completeness of a circuit, and photocurrent is continuously produced by regeneration of N719 and redox couples. The production and transportation of photoelectrons in the nanotube fiber are shown schematically in Figure 4c. The photovoltage comes from the energy difference between the Fermi level of the semiconducting nanotubes and the electrochemical potential of the redox

Figure 4. Characterizations of nanotube fiber solar cells. a) \(J-V\) curve of a solar cell under simulated 100 mWcm\(^{-2}\) illumination. \(J_{sc}\) = 10.3 mA cm\(^{-2}\), \(V_{oc}\) = 0.47 V, FF = 0.45, \(\eta = 2.2\%\). b) IPCE action spectrum (upper line) of the device and the UV/Vis absorption spectrum of N719 in ethanol (lower line). c) Diagram of the production and transportation of photoelectrons in a nanotube/N719 composite fiber. The top arrows represent sunlight. The tube, dots, and spheres correspond to the nanotube, N719, and photoelectrons, respectively. d) Dependence of the short-circuit current on the length of nanotube fibers in solar cells.
couple in the electrolyte. As the aligned nanotubes exhibit a three-dimensional conduction model, the transportation of electrons among them is very effective. According to the above working process, it is easy to understand that the photocurrent linearly increases with the increasing length of the fiber solar cell (Figure 4d).

To better understand the above mechanism, we compared the power conversion efficiencies of solar cells fabricated from nanotube fibers before and after treatment with strong nitric acid. The acidic treatment can produce carboxy groups from nanotube fibers before and after treatment with strong nitric acid. The acidic treatment can produce carboxy groups on the surfaces of building nanotubes, and the modification may vary the Fermi levels of nanotubes.\[10\] Figure S6 compares the Raman spectra of a nanotube fiber before and after acidic treatment. After acidic treatment, the G-band peak largely decreases in intensity and shifts to shorter wavelength, while the D-band peak increases in intensity and shifts to longer wavelength. As expected, the solar cell showed a decrease of photocurrent from 6.1 to 4.1 \(\mu\text{A}\), and the power conversion efficiency decreased from 2.2 to 1.5 %. However, it was found that the increasing density of nanotubes in the fiber solar cell greatly improved the transportation efficiency of photoelectrons. For example, a nanotube fiber shrunk 20 % in diameter after solvent treatment, and the resulting solar cell showed a power conversion efficiency of around 4.0 % compared to 2.2 % before treatment. We also made nano-tube-fiber organic solar cells on flexible substrate of ITO–PEN (ITO = indium tin oxide; PEN = polyethylene naphthalate) rather than FTO through a similar fabrication process. The resulting flexible devices exhibited power conversion efficiencies close to those on FTO. Typically, the efficiency ratio \(\eta_{\text{ITO-PEN}} / \eta_{\text{ITO}}\) was around 0.83. Interestingly, the efficiencies of the flexible devices slightly increased when they were bent up or down (up to 25 %).

The device efficiencies based on nanotube fibers with different diameters are compared in Table S1 in the Supporting Information. The current densities \(J_s\) decreased with increasing fiber diameters from 6 to 20 \(\mu\text{m}\), which could be explained as follows: The electrical contact areas between nanotube fibers and electrode were much smaller than the geometric project areas of the nanotube fibers. With increase in the diameter, the geometric project areas of nanotube fibers increased significantly, while the contact areas only slightly increased, so the current densities decreased. To improve the contact area, a nanotube fiber with diameter of 13 \(\mu\text{m}\) was replaced with two smaller fibers with the same diameter of 6 \(\mu\text{m}\), and it was found that the \(J_s\) value from two smaller fibers increased by about 60 % relative to that of the bigger fiber. Also, nanotube fibers were attached to the electrode through van der Waals forces after a series of treatments. However, the relatively small contact areas may limit the stability and efficiency if larger fibers are used to fabricate solar cells. Therefore, the electrical contact area between the fiber and the conductive substrate plays a key role in photocurrent generation. More efforts are underway to understand and optimize the device toward better performance. The \(V_c\) values did not change significantly for nanotube fibers with diameters smaller than 10 \(\mu\text{m}\). However, they decreased remarkably with a further increase of diameters above 10 \(\mu\text{m}\), as the charge recombination between electrons and \(I_\text{ci}\) ions became more serious with the increasing electron transportation distances, which leads to voltage loss.\[11\] As a result, the power conversion efficiencies decreased with increasing fiber diameters.

In conclusion, we have developed a novel solar cell from flexible, light-weight, ultrastrong, and semiconductive nanotube fiber. The high alignment of building nanotubes in the fiber allows charges to separate and transport along the fibers efficiently, which provides a fiber solar cell with high performance. The efficiency of the above fiber device may be further improved through the increase of the \(V_c\) value by shifting the Fermi level of nanotubes more negatively, increasing FF by improving the electric contact between the fiber and the charge collector, and increasing the \(J_s\) value by enhancing the dye loading of the nanotube fiber. This discovery expands the scope of materials and architectures available for high-performance photovoltaic devices.

Received: June 25, 2010
Revised: November 22, 2010
Published online: January 18, 2011

Keywords: carbon · nanotubes · photophysics · solar cells
